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Spatially complex localization after
one-twist-per-wave equilibria in twisted

circular rods with initial curvature
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and J. M. T. Thompson2

1Department of Engineering Mathematics, University of Bristol,
University Walk, Bristol BS8 1TR, UK

2Centre for Nonlinear Dynamics, University College London,
Gower Street, London WC1E 6BT, UK

In experiments on long rubber rods subject to end tension and moment, a one-twist-
per-wave deformation is often observed on the fundamental path prior to the onset
of localized buckling. An analysis is undertaken here to account for this observed
behaviour. First we derive general equilibrium equations using the Cosserat theory,
incorporating the effects of non-symmetric cross-section, shear deformation, gravity
and a uniform initial curvature of the unstressed rod. Each of these effects in turn can
be expressed as a perturbation of the classical completely integrable Kirchhoff–Love
differential equations which are equivalent to those describing a spinning symmet-
ric top. Non-symmetric cross-section was dealt with in earlier papers. Here, after
demonstrating that shear deformation alone makes little qualitative difference, the
case of initial curvature is examined in some detail.

It is shown that the straight configuration of the rod is replaced by a one-twist-per-
wave equilibrium whose amplitude varies with pre-buckling load. Superimposed on
this equilibrium is a localized buckling mode, which can be described as a homoclinic
orbit to the new fundamental path. The dependence is measured of the pre-buckled
state and critical buckling load on the amount of initial curvature. Numerical tech-
niques are used to explore the multiplicity of localized buckling modes, given that
non-zero initial curvature breaks the complete integrability of the differential equa-
tions, and also one of a pair of reversibilities.

Finally, the physical implications of the results are assessed and are shown to
match qualitatively what is observed in an experiment.

1. Introduction

The torsional buckling of long rods subject to end moment and tension is a fun-
damental problem, with applications to DNA supercoiling and pipeline, cable and
optical fibre kinking (see Thompson & Champneys 1996 and references therein). The
mathematical modelling of such phenomena has a long history, going at least as far
back as Kirchhoff (1859). See Antmann (1995, ch. VIII) and references therein for
a modern account. In earlier work (Thompson & Champneys 1996; Champneys &
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Thompson 1996; van der Heijden et al. 1997; van der Heijden & Thompson 1997) we
considered the nature of buckling of a long initially straight rod with uniform cross-
section subject to end moment M and tension T . Experiments and energy analysis
suggested that a localized form of deformation was the preferred mode of buckling
at the critical buckling load. This buckling load, for a perfect inextensible rod with
symmetric cross-section, is given by the simple dimensionless condition

m = mc = 2, where m := M/
√
BT, (1.1)

and B is the bending stiffness (Timoshenko & Gere 1961, equation 2–74).
For moderately large deflection (so that the buckled rod does not have a non-trivial

contact with itself) the spatial equilibrium of a rod is described (with one caveat,
see below) by the Kirchhoff–Love, or more generally the Cosserat, theory of rods
(see §2 below for the details). Here the rod is described by arclength along its centre
line and three directors which are aligned along the rod’s principal axes of inertia.
This leads to a system of ordinary differential equations for the contact forces and
moments in the arclength-dependent coordinate basis described by the directors.
It was Kirchhoff (1859) who noticed that the equilibrium equations for infinitely
long symmetric rods have identical form to the classical completely integrable sys-
tem describing the dynamics of a symmetric spinning top. At the buckling load,
the differential equations undergo a Hamiltonian–Hopf bifurcation (van der Meer
1985; Iooss & Pérouème 1993), included in the normal form of which is a homoclinic
solution. This solution represents a localized helical deformation that tends asymp-
totically to the flat unbuckled equilibrium state of the rod. That the two end states
must be physically aligned was not made clear in our previous work, but is a subtle
property of the structure of the underlying equations (see Kehrbaum & Maddocks,
this volume).

The situation is more complex, however, for rods without circular cross-section—
more precisely for rods whose principal bending stiffness about two orthogonal planes
are not equal—because the complete integrability of the differential equations is bro-
ken. For mildly anisotropic rods, this leads to spatial chaos in the differential equa-
tions and, more importantly to the problem of interest here, to an infinite multi-
plicity of multi-modal localized buckling paths (Mielke & Holmes 1988; Champneys
& Thompson 1996; van der Heijden et al. 1997) existing right up to the buckling
state. For strongly anisotropic rods with certain physical properties (sufficiently low
Poisson’s ratio, for example), a transition occurs to different buckling behaviour,
with localized buckling being ‘locked-on to tape-like behaviour’ (van der Heijden &
Thompson 1997), and multi-modal solutions only existing in a region of parameter
space bounded away from the buckling state.

Qualitative experiments on circular and square cross-section rubber rods reported
in Champneys & Thompson (1996) agree well with the theory, but with one caveat
(see Thompson & Champneys (1996), figures 4 and 6 and also figures 12 and 13 in §5
below). Prior to buckling a marked spatially periodic helical deformation is observed,
on top of which at the critical load the localized buckling mode is superimposed. The
characteristics of the observed pre-buckled and post-buckled helical deformations are
quite distinct. The pre-buckled state has one twist per wave whereas the buckling
mode has approximately three twists per wave.

The aim of this paper is to analyse an effect that is responsible for such a pre-
buckled one-twist-per-wave deformation. Effects missing from our earlier analysis
were: the effect of gravity (most experiments were carried out with the specimen
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held horizontally, often seen to hang in a shallow catenary); shear deformation (the
rod was assumed to be inextensible and transversely unshearable in the analysis—
inextensibility is clearly violated for the observations made under rigid loading); and
initial curvature of the rod in its unstressed state (a permanent deformation caused
by the fact that most specimens are stored in loosely wound coils). It is interesting to
note the observation mentioned briefly in Thompson & Champneys (1996, §6) that
the one-twist-per-wave mode was not observed in neutral-buoyancy under-water tests
on rubber rods that had been cast in a rectangular trough and hence had no initial
curvature.

The rest of the paper is outlined as follows. In §2, we review the Cosserat theory of
rods applied to the current problem and use it to derive non-dimensional equilibrium
equations for infinite rods subject to shear deformation and gravity, and having initial
curvature and not necessarily symmetric cross-section. Each of these four effects can
be treated as perturbations of the underlying ‘perfect’ problem. Our programme
of work is to treat each perturbation separately. Non-symmetric cross-section was
treated in earlier work and gravity will be left for future work. The main thrust of
the present work will be to treat initial curvature.

In §3 we review the unperturbed problem and use it to explain the numerical
methods which will be used in the following. Also in §3, the introduction of shear
deformation alone is shown to make little difference to what is observed.

Section 4 contains the analysis of the effects of initial curvature. First, it is shown
that the fundamental flat state is replaced by a new spatially homogeneous state in
the arclength-dependent coordinates. It is then shown explicitly that this state has
one twist per wave when interpreted physically and the amplitude and end-shortening
associated with it are computed as a function of the strength of initial curvature κ0.
Next, a linearization about this state reveals the new critical buckling load, replacing
(1.1) as a function, m(κ0), of the initial curvature. Finally, numerical methods are
used to compute localized buckling modes superimposed on the one-twist-per-wave
equilibria. Initial curvature, like non-symmetric cross-section, is again demonstrated
to imply an infinity of post-buckling modes.

Section 5 draws conclusions and considers some physical implications of the results.
We also present some experimental results. These confirm the finding of this paper,
that a circular rod with initial curvature, when twisted, does indeed form one-twist-
per-wave pre-buckling equilibria in which bending is in the direction of the unstressed
curvature.

2. Equilibrium equations

(a ) The Cosserat theory
Consider the formulation of equilibrium equations for a rod that can undergo

flexure, tension, extension and shear as elucidated in Antman (1995, ch. VIII). We
are interested in the case of an infinite rod, so we begin by choosing an origin for
an arclength coordinate s and define r(s) to be the position vector of the centre
line of the rod with respect to a fixed Cartesian coordinate system with basis vectors
{i, j,k}. The configuration of the rod in a deformed state is then defined by r(s), and
two orthonormal vectors d1(s) and d2(s) which define the position of two orthogonal
lines in the cross-section of the rod at s. In the case where the rod is straight and
prismatic when unstrained, with its centre line aligned along the z-axis, we may
regard d1,2(s) as defining the deformed position of the material originally aligned
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along the x- and y-axes, respectively. Upon setting

d3 := d1 × d2,

the triple {d1(s),d2(s),d3(s)} defines a moving rod-centred coordinate system, called
the directors of the rod. Note that in the presence of shear, in general d3(s) 6= r′(s),
where the prime denotes differentiation with respect to arclength. Henceforth all
vectors are expressed with respect to the moving basis {d1,d2,d3}, unless otherwise
stated.

The stress in the rod is defined by

n(s) = n1d1 + n2d2 + n3d3 and m(s) = m1d1 +m2d2 +m3d3,

which are, respectively, the contact force and couple exerted by the material
parametrized by s̃ < s on that parametrized by s̃ > s. Here n1,2 are shear forces,
n3 is tension, m1,2 are bending moments about the axes d1,2 and m3 is the twisting
moment about d3.

The strain of the rod is defined by two vectors

u(s) = u1d1 + u2d2 + u3d3 and v(s) = v1d1 + v2d2 + v3d3,

defined by

d′i = u× di, i = 1, 2, 3, and r′ = v. (2.1)

Here, u1 and u2 measure the flexure, u3 measures torsion, v1 and v2 measure trans-
verse shear and v3 measures dilation or axial extension. Note that if the rod were
unshearable and inextensible, then v = d3. It is thus reasonable to redefine the shear
vector as

v = d3 + y

(cf. Antman 1995, equation VIII.15.13), where y is small in a sense to be made
precise in the non-dimensionalization to follow.

Balancing forces and moments leads to the following equilibrium equations

dn
ds

+ f = 0, (2.2)

dm
ds

+ r′ × n+ l = 0, (2.3)

where f and l are distributed external forces and couples acting on the rod along its
length. The only body force or couple we shall be interested in is gravity. Therefore,
we take in (2.2) and (2.3)

l = 0 and f = −Dgk, (2.4)

where D is the density (per unit original arclength) of the cross-section and g is the
acceleration due to gravity. Note that (2.4) assumes that the k axis points vertically
upwards.

The differentials on the left-hand side of (2.2) and (2.3) represent the total deriva-
tive with respect to arclength which is related to the derivative with respect to s
in the moving coordinate frame (which is denoted by a prime) with the addition of
terms which describe the derivative of the coordinate frame with respect to s. For
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example,
dn
ds

=
d
ds

(n1d1 + n2d2 + n3d3)

= (n′1d1 + n′2d2 + n′3d3) + (n1d
′
1 + n2d

′
2 + n3d

′
3)

= n′ + (n1u× d1 + n2u× d2 + n3u× d3), (by (2.1))
= n′ + u× n.

Hence, using (2.1) and (2.4), (2.2) and (2.3) become

n′ = n× u+Dgk, (2.5)
m′ = m× u+ n× v. (2.6)

(b ) Constitutive relations and boundary conditions
It remains to specify the curvatures u and shears v in terms of the contact forces n

and couples m. These constitutive relations may take a quite general form (Antman
1995, equation (2.2)), but here we shall take the simplest linear constitutive relations
allowing for the effects of initial curvature. There is evidence to suggest (Antman
& Jordan 1974; Champneys & Thompson 1996) that physically realistic nonlinear
constitutive laws make little qualitative difference to localized buckling. Specifically,
we assume relations of the form

u1(s) = u0 +m1(s)/A, u2(s) = m2(s)/B, u3(s) = m3(s)/C,
y1(s) = n1(s)/H, y2(s) = n2(s)/J, y3(s) = n3(s)/K.

}
(2.7)

Here, A and B are the principal bending stiffnesses about d1 and d2, C is the torsional
stiffness of the rod and u0 is an assumed initial curvature of the rod, which without
loss of generality we assume to occur about the d1 axis. H and J are the transverse
shear stiffnesses, and K is the axial stiffness.

Using (2.7) it is now possible to express (2.5) and (2.6) as a six-dimensional system
of ordinary differential equations for m(s) and n(s). In order to solve this system,
we must discuss its boundary conditions. In this work it is assumed that the rod is
held with boundary conditions at infinity which supply a constant twisting moment
M and tension T . For the time being, we consider these loads as fixed (either pre-
fixed or control) parameters. In interpretation of solutions, however, one should allow
for the possibility of rigid loading in which either or both of M or T are regarded
as free parameters under controlled end rotation or end shortening. The boundary
conditions for n and m must then satisfy√

n · · ·n→ T, as s→ ±∞, √
m · · ·m→M, as s→ ±∞. (2.8)

Note that we do not put any constraint on the directions in which n and m are
pointing. These will follow from the analysis.

(c ) Non-dimensionalization and dynamical system formulation
Equations (2.5) and (2.6) can be made dimensionless by setting

x1 = n1/T, x2 = n2/T, x3 = n3/T,

x4 = m1/M, x5 = m2/M, x6 = m3/M,

}
(2.9)

rescaling the axial length
t = (M/B)s, (2.10)
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and introducing the dimensionless parameters

m = M/
√
BT, ρ = (B/A)− 1, ν = (B/C)− 1, κ0 = Au0/M,

σ = (J/H)− 1, γ = (J/K)− 1, ε = T/J, δ = DgB/(MT ).

}
(2.11)

The parameter m is a single dimensionless load parameter, showing the equivalence
(under dead loading) of increasing moment and reducing tension. ρ may be regarded
as measuring the non-circularity of the cross-section of the rod. More precisely, ρ = 0
corresponds to the bending stiffnesses about the two principal axes being equal,
which could also represent a square cross-section, for example. The parameter ν + 1
measures the ratio of torsional stiffness to the greater principal bending stiffness
(here we assume B > A and hence ρ > 0). For solid rods with circular cross-section
ν is equal to Poisson’s ratio, with a typical physical value being ν = 1

3 . For rods with
anisotropic cross-section, however, it should be pointed out that ν no longer equals
Poisson’s ratio which is given by a certain combination of ν and ρ, depending on
the geometry (van der Heijden & Thompson 1997). κ0 is the dimensionless initial
curvature, and σ and γ are the analogues of ρ and ν for the shear and extension
coefficients. ε measures the relative importance of shear compared with bending and
δ measures the relative strength of gravity compared with the applied loads.

Typically we think of ε, δ and κ0 as small whereas ρ + 1, ν + 1, σ + 1 and γ + 1
are all O(1). It is also reasonable to set ρ = σ, with both parameters measuring the
degree of non-circularity of the cross-section.

Under the non-dimensionalization (2.9), (2.10) and (2.11), the equilibrium equa-
tions (2.5) and (2.6) become

ẋ1 = (1 + ν)x2x6 − x3x5 + δk1(t),
ẋ2 = (1 + ρ)x3(x4 + κ0)− (1 + ν)x1x6 + δk2(t),
ẋ3 = x1x5 − (1 + ρ)x2(x4 + κ0) + δk3(t),
ẋ4 = νx5x6 + (1/m2)[x2 + εγx2x3],
ẋ5 = (1 + ρ)(x4 + κ0)x6 − (1 + ν)x4x6 + (1/m2)[ε(σ − γ)x1x3 − x1],
ẋ6 = x4x5 − (1 + ρ)(x4 + κ0)x5 − (ε/m2)σx1x2,


(2.12)

where (k1, k2, k3) are the components of k with respect to {d1,d2,d3}, and a dot
denotes differentiation with respect to the scaled arclength t.

In the gravity-free case, δ = 0 and (2.12), when regarded as an initial-value prob-
lem, represents an autonomous six-dimensional dynamical system

ẋ = f(x, λ), x ∈ R6, λ ∈ Rp,
with p the number of parameters considered to be controlled. It can be shown to be
Hamiltonian with two independent integrals of the motion (Mielke & Holmes 1988).
We are interested in solutions which are localized to some portion of the axial length.
Hence we apply the homoclinic boundary conditions

x(t)→ x∗, as t→ ±∞, (2.13)

where x∗ is a spatially homogeneous equilibrium position of the rod, that is
f(x∗, λ) = 0, which is subject to the constraint imposed by the dimensionless version
of (2.8), √

x∗1
2 + x∗2

2 + x∗3
2 = 1,

√
x∗4

2 + x∗5
2 + x∗6

2 = 1. (2.14)

In order to interpret solutions to (2.12), (2.13) as configurations of the rod in physical
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coordinates, the twelve-dimensional system (2.1) must be solved for the i, j and k
components of each di and r. The first nine of these equations are the Frenet–Serret
equations of differential geometry. The dimensionless versions of (2.1) are

ḋi = ũ× di, i = 1, 2, 3, and ˙̃r = ṽ, (2.15)

in which

ũ = (1 + ρ)(x4 + κ0)d1 + x5d2 + (1 + ν)x6d3,

ṽ = ε(1 + σ)x1d1 + εx2d2 + (1 + ε(1 + γ)x3)d3, r̃ = (M/B)r.

These equations can be solved after a solution to (2.12) has been found. r and di are
typically subject to initial conditions specifying the position and orientation of the
rod at its left-hand endpoint, t = −∞.

If gravity effects are included, then δ 6= 0 and (2.12) can no longer be regarded in
isolation, but must be solved in tandem with the equations for di in (2.15) in order
to calculate k(t). Notice that k is obtained from the solution of (2.15) by forming
the matrix

B = (d1|d2|d3)
and taking

k = B−1(0, 0, 1)T .
We may consider each of the parameters ρ (= σ), ε, κ0, δ as measuring the strength

of perturbations to the ‘perfect’ symmetric unshearable initially straight rod in the
absence of gravity. The case of non-symmetric rods, with ε = δ = κ0 = 0, ρ 6= 0, was
analysed in depth in Champneys & Thompson (1996), van der Heijden et al. (1997)
and van der Heijden & Thompson (1997) to which we refer the reader for the details.
For the rest of this paper we shall consider only rods with symmetric cross-section,
ρ = σ = 0. Also, we shall not, here, analyse the effects of gravity, that is we set δ = 0.
The following section reviews the unperturbed case and then considers the effect of
axial extensibility and transverse shear (ε 6= 0). The bulk of our analysis, in §4, will
be for a rod with curvature when unstrained (κ0 6= 0) with the other perturbations
fixed at zero.

3. The unperturbed case

Consider (2.12) for ρ = ε = κ0 = δ = 0. First, observe that the unperturbed
system (and, indeed, the wider class of systems with ρ 6= 0) is invariant under the
following two involutions:

R1 : (x1, x2, x3, x4, x5, x6)→ (−x1, x2, x3,−x4, x5, x6), t→ −t, (3.1)
R2 : (x1, x2, x3, x4, x5, x6)→ (x1,−x2, x3, x4,−x5, x6), t→ −t. (3.2)

This will have implications for the multiplicity of homoclinic solutions. Next, the
unperturbed system (2.12) is completely integrable with the following three inde-
pendent ‘constants of the motion’:

I1 := x2
1 + x2

2 + x2
3 = const., (3.3)

I2 := x1x4 + x2x5 + x3x6 = const., (3.4)
I3 := x6 = const. (3.5)

The integrals (3.3) and (3.4) correspond to the conservation along the axial length of
the rod of the magnitude of force and the component of torque about the loading axis,
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respectively. (3.5) describes conservation of torque about the body (i.e. symmetry)
axis of the rod. (Actually, the twisted rod equations are completely integrable for a
much wider class of constitutive relations (see Antman 1995).)

Note that for given m, the only spatially homogeneous equilibrium solutions of
(2.12) that satisfy the constraint (2.14) are x = (0, 0,±1, 0, 0,±1). We can ignore
the solutions with minus signs because we are considering tension rather than com-
pression and by convention of the direction in which we apply end moment. Therefore,
we set

x∗ = (0, 0, 1, 0, 0, 1). (3.6)
Linearizing about this equilibrium one finds that there are two zero eigenvalues

corresponding to translations in the directions ofm and n. Imposing (2.14), in effect,
fixes this translation and, through (3.6), the values of the integrals (3.3), (3.4), (3.5)
for the spatially homogeneous solution and its localized deformations. Examining the
other four eigenvalues, the trivial equilibrium loses physical stability (four complex
eigenvalues coalesce on the imaginary axis) as m is increased through the critical
value m = 2. Here a Hamiltonian–Hopf bifurcation occurs (van der Meer 1985; Iooss
& Pérouème 1993).

As a result of complete integrability, at the Hamiltonian–Hopf point we have the
subcritical bifurcation of a manifold of localized buckling modes. Each solution in the
manifold consists of a rigid rotation of a primary localized helix, that is a homoclinic
solution of (2.12). The physical stability of these localized buckling modes under
rigid loading was investigated in Thompson & Champneys (1996).

(a ) Measuring twist
Before proceeding, let us first demonstrate how the Frenet–Serret and centre line

differential equations (2.15) may be used to give the degree of twist about the central
axis for a particular physical configuration. Specifically we demonstrate that when
interpreted in dimensional coordinates, the trivial equilibrium (3.6) corresponds to
a straight rod with the tension T and moment M being carried along the centre line
of the rod. Taking x = x∗ given by (3.6), we find that (2.15) gives

ḋ3 = 0, d̈1 = −(1 + ν)2d1, ˙̃r = const. (3.7)

Choosing initial conditions so that d3 = i is horizontal, and hence

r̃ = ti, (3.8)

the second equation of (3.7) gives a rotation of the material of the rod about the
horizontal with angular frequency (fundamental twist) τ = 1 + ν.

In contrast, the wavelength of the helical deformation at the critical buckling load
can be obtained by linearizing about the the trivial solution at m = 2 (van der
Heijden & Thompson 1997). This analysis uses a description of the rod in terms of
Euler angles θ(s), ψ(s) and φ(s) (see Love (1927), art. 253, for the definition of the
angles defined using this notation). Along the trivial solution we have φ̇ = 1

2 + ν while
at buckling (i.e. θ = 0), φ̇+ ψ̇ = τ = 1 + ν. Hence, ψ̇ = 1

2 . Now, ψ is the azimuthal
angle determining the wavelength of the helix. The number of twists per wave (tpw)
can therefore be obtained as

tpw =
τ

ψ̇
= 2(1 + ν). (3.9)

For rubber rods (ν ≈ 0.5) this gives the three twists per wave observed in experiments
mentioned in §1 (see also §5 below).
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(b ) Numerical methods
Let us briefly outline how the numerical methods used in Champneys & Thompson

(1996) and van der Heijden et al. (1997) can be adapted for the present setting. For
homoclinic orbits to a fixed point we use the shooting method developed in Champ-
neys & Spence (1993). Load–deflection-type bifurcation diagrams are subsequently
obtained by continuation of these orbits as parameters are varied using the code
AUTO (Doedel et al. 1991) for continuation of solutions to boundary-value prob-
lems.

This combined use of shooting and continuation is robust and was described in
detail in earlier papers (see, for example, van der Heijden et al. 1997) to which the
reader is referred for the details. We remark, however, that these methods typically
truncate the problem to an approximation of half the rod (t ∈ [0, T ], T large),
and only find solutions which are invariant under the reversibilities R1 or R2. Non-
symmetric homoclinic orbits may also be found with more effort, by shooting over
an approximation to the full length of the rod (t ∈ [−T , T ]).

In order to compute load–deflection diagrams for localized buckling modes it is
necessary to also measure the end displacement D and end rotation R from the
spatially homogeneous reference position. Once a well-posed solution to (2.12) has
been found, we solve (2.15) subject to the initial conditions
r̃(0) = (0, 0, 0), d1(0) = (1, 0, 0), d2(0) = (0, 1, 0), d3(0) = (0, 0, 1). (3.10)

The end displacement and end rotation can then be obtained as
D = T − r̃3(T ), cosR = 〈d1(T ), (1, 0, 0)〉, sinR = 〈d1(T ), (0, 1, 0)〉, (3.11)

provided d3(T ) is sufficiently aligned with the initial direction d3(0) = (0, 0, 1).
Although this alignment is not assured at the symmetric section, it is, for localized
solutions, at the end points of the rod. Therefore, in applying (3.11) T is taken to
be the full length of the rod. (The case that end vectors do not line up because
the fundamental configuration of the rod is not a straight one, as happens when
the rod has initial curvature, can be easily accommodated; see §4 c.) In (3.10) and
(3.11) vectors are expressed with respect to the fixed frame {i, j,k}. Note that the
angle R is only defined modulo 2π in (3.11). Continuity with respect to the arclength
parameter t, however, will allow us to keep track of the number of full turns made
by the end point.

(c ) The effect of shear and extension
In this section we demonstrate that including the effect of shear alone makes little

qualitative difference. To that end we take ε > 0 in (2.12) while keeping ρ = σ =
δ = κ0 = 0. First note that, as for the unperturbed equation, the only spatially
homogeneous equilibrium that satisfies the constraint (2.14) is the trivial solution
(3.6). Setting x = x∗ + z, one obtains

ż1 = (1 + ν)z2(1 + z6)− (1 + z3)z5,

ż2 = (1 + z3)z4 − (1 + ν)z1(1 + z6),
ż3 = z1z5 − z2z4,

ż4 = νz5(1 + z6) + (1/m2)[z2 + εγz2(1 + z3)],
ż5 = −νz4(1 + z6) + (1/m2)[−εγz1(1 + z3)− z1],
ż6 = 0.


(3.12)

Here we note that the linear terms of (3.12) are identical to those when ε = 0 pro-
vided 1/m2 is replaced by (1 + εγ)/m2. Hence we conclude that the local bifurcation
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z z

x x

yy

(a) (b)

Figure 1. The primary buckling mode at two different loads: (a) m = 1.7; (b) m = 2.09 (ν = 1
3 ,

ε = 0.1, γ = 1, implying mc = 2.097618).

m m

(a) (b)

D
~

R
~

Figure 2. (a) End shortening D̃ and (b) end rotation R̃ versus load m for the primary homoclinic
orbit (ν = 1

3 , ε = 0.1, γ = 1, implying mc = 2.097618). Data for the unperturbed case have
been included in dashed lines for comparison.

behaviour is qualitatively identical to that in the shear-free case, with the critical
buckling condition now given by

mc = 2
√

1 + γε. (3.13)

Using (2.11) to write this in terms of the original parameters we get

M√
BT

= 2
√

1 + T (K−1 −H−1), (3.14)

where H−1 (= J−1) and K−1 are the shear and axial flexibility, respectively. We
conclude that compared with the unperturbed case (H−1 = 0, K−1 = 0), shear flex-
ibility tends to lower the critical buckling load mc, while axial flexibility tends to
raise mc.

Figure 1 shows examples of three-dimensional rod shapes for two different values of
the load m. The solutions were computed on a truncated interval using the shooting
method explained in §4, followed by an integration of the centre line equations in
(2.15).

Load–deflection characteristics of the localized buckling mode are given in figure 2.
The diagrams were computed by monitoring end displacement, D, and end rotation,
R, while numerically continuing the homoclinic orbit for varying m. Actually plot-
ted are the corrected quantities D̃ and R̃ obtained from D and R by subtracting
the trivial contributions, proportional to the length of the rod, which the straight
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unbuckled rod would have, and dividing the angle by 2π:

D̃ = (1 + ε(1 + γ))T − r̃3(T ), R̃ =
R− (1 + ν)T

2π
, (3.15)

where T denotes the full length of the rod. Thus, D̃ and R̃ represent the true buckling
contributions to end displacement and end rotation.

For comparison we have also included in figure 2 the deflections in the unperturbed
case which can be computed exactly:

D̃ = 2m
√

4−m2, R̃ = 4 arccos 1
2m (3.16)

(see Thompson & Champneys 1996, equations (5.3) and (5.4)). We observe that
shear causes an increase in the maximum end-shortening.

4. Initial curvature

Consider now a rod that is naturally curved, κ0 6= 0, while ignoring the effects of
shear, gravity and non-symmetric cross-section, ρ = σ = ε = δ = 0.

(a ) One-twist-per-wave equilibria
Spatially homogeneous equilibria of (2.12), x(t) ≡ x∗, are determined by setting

the right-hand sides of (2.12) to zero:

0 = (1 + ν)x∗2x
∗
6 − x∗3x∗5, (4.1)

0 = x∗3(x∗4 + κ0)− (1 + ν)x∗1x
∗
6, (4.2)

0 = x∗1x
∗
5 − x∗2(x∗4 + κ0), (4.3)

0 = νx∗5x
∗
6 + x∗2/m

2, (4.4)
0 = (x∗4 + κ0)x∗6 − (1 + ν)x∗4x

∗
6 − x∗1/m2, (4.5)

0 = −κ0x
∗
5. (4.6)

In addition, an equilibrium must satisfy the boundary constraints (2.14). From (4.6)
we obtain x∗5 = 0 and hence from (4.4) that x∗2 = 0. Solving (4.2) and (4.5) for x∗1
and x∗4 in terms of x∗3 and x∗6 yields

x∗1 =
κ0m

2(1 + ν)x∗3x
∗
6

x∗3 + x∗6
2ν(1 + ν)m2

and x∗4 =
κ0[m2(1 + ν)x∗6

2 − x∗3]
x∗3 +m2ν(1 + ν)x∗6

2 . (4.7)

Substitution into (4.7) of x∗3 and x∗6 from (2.14) (assuming them to be positive),
leads to two coupled equations for x∗1 and x∗4. A straightforward application of the
Implicit Function Theorem shows that there is a unique solution for small κ0 tending
to x∗1 = x∗4 = 0 as κ0 → 0. This solution can be expressed as a series expansion for
small κ0:

x∗1 =
m2(1 + ν)

νm2(1 + ν) + 1
κ0

−m
2(1 + ν)[m2(1 + ν)(m2(2ν2 + 3ν + 1)− (ν + 2)) + 1]

2(νm2(1 + ν) + 1)4 κ3
0 +O(κ5

0),

x∗2 = 0,

x∗3 = 1− m4(1 + ν)2

2(νm2(1 + ν) + 1)2κ
2
0 +O(κ4

0),
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x∗4 =
m2(1 + ν)− 1
νm2(1 + ν) + 1

κ0

−m
2(1 + ν)2[m4(1 + ν)2 + 4m2(1− ν) + 2]

2(νm2(1 + ν) + 1)4 κ3
0 +O(κ5

0),

x∗5 = 0,

x∗6 = 1− (m2(1 + ν)− 1)2

2(νm2(1 + ν) + 1)2κ
2
0 +O(κ4

0). (4.8)

Without using this expansion we shall now explicitly demonstrate that this equilib-
rium, when substituted into the Frenet–Serret and centre line differential equations
(2.15), results in a one-twist-per-wave solution. Now,

ũ = (x∗4 + κ0)d1 + (1 + ν)x∗6d3 =: J(κ0, ν,m)d1 +H(κ0, ν,m)d3, (4.9)

where J and H are constants determined from the right-hand sides of (4.8). Hence
equations (2.15) become

ḋi = J(d1 × di) +H(d3 × di), i = 1, 2, 3 and ˙̃r = d3, (4.10)

with the last equation arising because ṽ = d3 in the absence of shear. Note that for
κ0 small

J = O(κ0) and H = O(1), as κ0 → 0. (4.11)
The first three equations in (4.10) are

ḋ1 = Hd2, ḋ2 = Jd3 −Hd1, ḋ3 = −Jd2,

from which we can eliminate d2 to give(
d̈1

d̈3

)
=

[
−H2 HJ

HJ −J2

](
d1

d3

)
. (4.12)

Upon defining new orthonormal coordinate axes

e1 =
1√

H2 + J2
(Hd1 − Jd3), e3 =

1√
H2 + J2

(Jd1 +Hd3), e2 = e3 × e1 = d2,

(4.13)
one finds from (4.12) that

ë1 = −Ω2e1 and ë3 = 0, (4.14)

where Ω =
√
H2 + J2. The solution to these equations is

e1(t) = A cos Ωt+B sin Ωt, e3(t) = C, (4.15)

where A, B and C are three constant orthonormal vectors determined by the initial
conditions. Since there is no gravity, we are free to choose an origin for arclength
and an orientation such that

A = i, B = j, C = k.

Note that the coefficient of t in the solution for e3 from (4.14) is chosen to be zero
in order to avoid terms which grow as t→ ±∞. Inverting the transformation (4.13),
we obtain an expression for the centre line of the rod via

˙̃r = d3 = (1/Ω)(He3 − Je1),
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Figure 3. The dimensionless spatial configuration of the equilibrium solution (4.16) for ν = 1
3 ,

κ0 = 0.1 and m = 1.
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Figure 4. Three-dimensional plots of the amplitude (a) and end-shortening (b) of the helix
(4.16) for ν = 1

3 , 0 6 κ0 6 0.5 and 0 < m 6 2.5.

to give
r̃(t) = (H/Ω)tk + (J/Ω2)(cos Ωtj − sin Ωti). (4.16)

Equation (4.16) describes a helix with amplitude J/Ω2 and pitch angle 1
2π − θ,

where θ = arctan(J/H), the angle of rotation in the transformation (4.13). The
central axis is directed along k and the angular frequency Ω of the helix about its
central axis is identical to that of the director d1, say, about that axis. Hence (4.16)
is a one-twist-per-wave spatially homogeneous equilibrium configuration of the rod.

Figure 3 shows a solution (4.16) for some typical values of κ0, m and ν, where
H and J were determined by numerically solving the equations (4.7) and (2.14).
Comparison with (3.8) gives that the dimensionless end-shortening per unit length is

Ẽ = 1− (H/Ω).

Recall the relative sizes (4.11) of H and J for small κ0. Hence note that Ẽ → 0 as
κ0 → 0, as does the amplitude of the helix J/Ω2. Figure 4 shows how the amplitude
and end-shortening vary with m and κ0.

(b ) Linearization
Linearization around the equilibrium x∗ shows that (2.12) always has two zero

eigenvalues, as in the unperturbed case, which correspond to the rotational symmetry
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m

κ0

Figure 5. Locus in the (m,κ0)-plane of Hamiltonian–Hopf bifurcation points.

in the problem. The other four eigenvalues satisfy the characteristic equation

λ4 + (−2x∗3m
2 + 5

3m
4κ0x

∗
4 + 17

9 m
4x∗6

2 + 2m4κ2
0 +m4x∗4

2)λ2m−4

+(−m2x∗3x
∗
4

2 − 10
27m

4x∗6
2κ0x

∗
4 + 16

81m
4x∗6

4 + 8
9x
∗
6

2m2x∗3 + x∗3
2

+ 5
3x
∗
6m

2x∗4x
∗
1 + 35

9 x
∗
6m

2κ0x
∗
1 − 2m2x∗3κ

2
0 − 1

3m
4x∗4

3κ0 + 1
3m

4x∗4
2κ2

0
17
9 m

4x∗6
2κ2

0

+ +m4κ4
0 + 5

3m
4x∗4κ

3
0 + 1

9m
4x∗6

2x∗4
2 − 5

3m
2x∗3κ0x

∗
4)m−4 = 0, (4.17)

where, for simplicity, it is assumed that Poisson’s ratio takes the numerical value
ν = 1

3 . This value will be taken in all numerical simulations which follow.
Analysis of (4.17) using Maple (solving for x1, x3, x4 and x6 using (4.7) and

(2.14)) reveals that the situation is qualitatively the same as the unperturbed case
with ρ = 0, κ0 = 0. Namely that for m < mc(κ0) there are four complex eigenvalues
±λ ± iω, implying physical stability of the spatially homogeneous equilibrium, and
that at m = mc there is a Hamiltonian–Hopf bifurcation, with physical instability
(four imaginary eigenvalues) occurring for m > mc. A plot of mc(κ0) is given in
figure 5, which was determined numerically by solving for double roots of (4.17).
Note that the value of m required for the buckling bifurcation to occur is initially
flat and then decreases with increasing initial curvature κ0.

(c ) Localized buckling solutions
First note that adding initial curvature destroys part of the symmetry of the

unperturbed system. Specifically, of the two symmetries R1 and R2 only R2 remains
(R1 would have remained had we taken initial curvature about d2 instead of d1).
Consequently, we should expect the existence of two rather than four reversible
primary buckling modes. Our shooting method indeed gives us the two homoclinic
orbits shown in figure 6. These solutions were computed for ν = 1

3 , κ0 = 0.02 and
m = 1.7, while in the shooting method we used ε = 10−5 and

v1 = (0.582029× 10−4, 0.609510,−0.196407× 10−5,

0.188564, 0.304719,−0.00636259),

v2 = (−0.609205, 0, 0.0205577,−0.304777, 0.188629, 0.00494804).

See van der Heijden (1997) for the meaning of ε, δ and vi.
Three-dimensional rod shapes, obtained by solving the centre line equation in
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t t

(a) (b)

x1

Figure 6. The two R2-reversible primary buckling modes: (a) P1 (δ = 5.156917,
T = 41.299427); (b) P2 (δ = 1.807504, T = 41.097204). (ν = 1

3 , κ0 = 0.02, m = 1.7.)

z z

x x

yy

(a) (b)

Figure 7. The two primary buckling modes P1 (a) and P2 (b) (ν = 1
3 , κ0 = 0.02, m = 1.7).

Figure 8. The primary buckling mode P1 for large initial curvature (ν = 1
3 , κ0 = 0.4, m = 1.7).

(2.15), are depicted in figure 7. The figure nicely shows the small-amplitude heli-
cal solution of the rod away from the large deformation. Figure 8 shows one pri-
mary mode for large initial curvature κ0 = 0.4. Here the distinction between the
pre-buckled one-twist-per-wave equilibrium and the large deformation is somewhat
blurred.

Because asymptotically towards infinity the spatially homogeneous solution is a
helical rather than a straight rod, the d3 director of the local coordinate frames at the
beginning and end point do not line up. We can not, therefore, use (3.11) directly
to obtain the end deflections. End shortening and end rotation are now naturally
computed with respect to the central axis e3 = k of the helix. Thus, to get the
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mm

Figure 9. (a) End shortening D̃ and (b) end rotation R̃ versus load m for the primary homoclinic
orbits P1 (solid curves) and P2 (dashed curves) (ν = 1

3 , κ0 = 0.02, implying mc = 1.999116).

(a) (b)

κ0 κ0

R
~

D
~

Figure 10. (a) End shortening D̃ and (b) end rotation R̃ versus initial curvature κ0 for the
primary homoclinic orbits P1 (solid curves) and P2 (dashed curves) (ν = 1

3 , m = 1.7, implying
the critical buckling value κ0 = 0.439763).

end rotation we determine the projections d̂1, d̂2 of the vectors d1, d2 of the local
coordinate frames at both ends of the rod onto the plane (e1,e2) orthogonal to the
axis k. D and R are then computed from

D = T − e3(T ), cosR = 〈d̂1(T ), d̂1(0)〉, sinR = 〈d̂1(T ), d̂2(0)〉, (4.18)

where T represents the full length of the rod. Note that, in view of (4.13), d̂2 = d2,
and hence d̂2(0) = (0, 1, 0). The clean buckling contributions to the end deflections
are again obtained from D and R by subtracting the contributions from the trivial
solution, this time a helix:

D̃ = (1− Ẽ)T − e3(T ), R̃ =
R− ΩT

2π
. (4.19)

Load-deflection diagrams are given in figure 9. Figure 10 shows how end shortening
and end rotation change as the initial curvature κ0 is varied. Note that the diagrams
of figure 10 are symmetric about κ0 = 0 (with a change of role of P1 and P2), as
expected. At κ0 = 0 the symmetric modes P1 and P2 are part of a full circle of
primary homoclinic orbits, all with the same load–deflection characteristics. Indeed,
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Table 1. Sequence of R2-reversible bi-modal homoclinic orbits with labels (P1, n, P1) (left) and
(P2, n, P2) (right) for rods with initial curvature (ν = 1

3 , m = 1.7, κ0 = 0.02)

n δn Tn Tn − Tn−1 n δn Tn Tn − Tn−1

1 5.527777 52.129804 1 2.520175 50.544884
2 5.008232 53.422228 1.292424 2
3 5.199237 55.519861 2.097633 3 1.913620 53.569436
4 5.143442 57.342668 1.822808 4 1.769202 55.268184 1.698748
5 5.161089 59.246022 1.903353 5 1.818802 57.217025 1.948841
6 5.155616 61.124430 1.878408 6 1.803924 59.081629 1.864604
7 5.157323 63.010459 1.886029 7 1.808612 60.972140 1.890511
8 5.156791 64.894152 1.883693 8 1.807158 62.854410 1.882270
9 5.156957 66.778561 1.884408 9 1.807611 64.739273 1.884863

10 5.156905 68.662750 1.884189 10 1.807470 66.623317 1.884044
11 5.156921 70.547006 1.884256 11 1.807514 68.507620 1.884303
12 5.156916 72.431244 1.884237 12 1.807500 70.391841 1.884221
13 5.156918 74.315485 1.884241 13 1.807505 72.276088 1.884247
14 5.156917 76.199725 1.884240 14 1.807503 74.160327 1.884239
15 5.156917 78.083965 1.884240 15 1.807504 76.044568 1.884241

P1 5.156917 41.299427 (π/2ω) P2 1.807504 41.097204 (π/2ω)
= 1.884241 = 1.884241

the corresponding D̃ and R̃ values are those of the unperturbed case included in
dashed lines in figure 2.

The continuation code with fixed T = 82.5 (full-length rod) has problems in the
steep regions close to buckling, which is why the load–deflection curves do not reach
right down to the κ0-axis. A numerical check with larger values of the truncation
interval T shows that the curves can be followed further down as T is increased.
Hence, we conclude that we are dealing with an effect due to finite T and that P1
and P2 really bifurcate from the trivial solution at κ0 = 0.439763.

Apart from breaking the symmetry of the unperturbed system, initial curvature
also breaks complete integrability. Specifically, we no longer have conservation of
torque about the body axis of the rod, i.e. I3 6= const. As a result, we have a situa-
tion analogous to the case of an anisotropic rod studied extensively in van der Heijden
et al. (1997), with a countable infinity of multi-modal homoclinic orbits amidst spa-
tial chaos. These multi-modal solutions are located in the transverse intersection of
the invariant manifolds of the fixed point and roughly consist of multiple copies of
primary solutions separated by finite numbers of small-amplitude oscillations.

Table 1 gives data for the first 15 members of two families of R2-reversible bi-
modals. The homoclinic orbits of one family are built up of two P1-type humps
and are accordingly labelled (P1, n, P1), where n is a measure of the number of small
oscillations between the two large deformations (the choice of origin for n is somewhat
arbitrary). Similarly, the orbits of the other family look like two copies of P2 and are
labelled (P2, n, P2). Data for (P2, 2, P2) are missing because this orbit could not be
found. It is not clear whether this solution somehow does not exist for the parameters
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(a) (b)

(c) (d)

x1

x1

t t

Figure 11. Two examples of R2-reversible bi-modal homoclinic orbits: (a) orbit (P1, 5, P1); (b)
orbit (P2, 5, P2). Two examples of non-reversible bi-modal homoclinic orbits: (c) δ = 4.768824,
length = 104.618967; (d) δ = 1.795082, length = 109.838808 (ν = 1

3 , κ0 = 0.02, m = 1.7).

used, or that our shooting method just failed to locate it. As to the former possibility,
coalescence rules for multi-modal orbits as derived (for the non-symmetric case) in
van der Heijden et al. (1997) might give some clarification.

Note that for both families the δ-values converge to that of the corresponding
primary orbit, while the difference between successive T -values tends to (π/2ω),
where ω is the (positive) imaginary part of the complex quadruple of eigenvalues
at the fixed point x∗. This limiting behaviour can be understood by imagining,
in phase space, each successive homoclinic orbit in the sequence making an extra
quarter turn around the fixed point immediately prior to hitting the symmetric
section. Figures 11a, b show x1–t plots for one member of each of the above two
families of bi-modals.

The two infinite families (P1, n, P1) and (P2, n, P2) define all bi-modals which are
themselves reversible. Non-reversible bi-modals with labels (P1, n, P2) and (P2, n, P1)
do exist but are not captured by our shooting method in the present form. Two exam-
ples of non-reversible bi-modals, obtained by shooting over the full length of the rod,
are given in figures 11c, d. As in the case of an anisotropic rod, reversible tri-modals,
four-modals and higher-order multi-modals occur in similar families parametrized by
multiple integers.

We should stress that our boundary conditions ensure that all the homoclinic
orbits are computed for the same values of the two integrals of motion I1 and I2,
namely those of the one-twist-per-wave equilibrium to which the localized solutions
asymptote as t→ ±∞.
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5. Physical interpretation

Let us finally make some physical interpretations of the results obtained. The main
achievement of this paper is to demonstrate that a uniform initial curvature in the
stress-free state does indeed give rise to one-twist-per-wave equilibria upon which
localized buckling is superimposed at the critical load. Note from figure 5 that the
critical buckling condition is not changed much by the introduction of small initial
curvature. Neither is the post-buckling path of the primary buckling mode (compare
figures 9 and 2).

We have also shown that (at least for the initially straight rod) allowing for
shear/axial deformations makes little qualitative difference. However, when inter-
preting experiments under rigid loading it is important to note that ‘shear’ defor-
mations, specifically axial extension, must occur if the rod is seen to buckle into a
non-straight configuration. We must also take care not to make glib statements on
experiments based on the so-far dimensionless analysis.

Note from the non-dimensionalization (2.11) that both r̃ and t scale with M/B.
Recalling that we are assuming a symmetric cross-section (i.e. A = B), the equilib-
rium solution (4.16) can then be written in dimensional coordinates as

r(s) =
H

Ω
sk +

AJ

MΩ2 (cosωsj − sinωsi), where ω =
MΩ
A

. (5.1)

From (2.11), (4.8) and (4.9) it follows that for small initial curvature u0 the dimen-
sional helical characteristics are given by

radius =
AJ

MΩ2 =
AC2

M2(A− C) + TC2u0 +O(u3
0),

frequency = ω =
M

A
Ω =

M

A
(1 + ν) +O(u2

0) =
M

C
+O(u2

0), (5.2)

1
2π − pitch angle = θ = arctan

(
J

H

)
=

ACM

M2(A− C) + TC2u0 +O(u3
0).

We have explicitly computed the one-twist-per-wave helical equilibrium for the
case where initial curvature is the only perturbation allowed in figure 13. It is
easy to see, however, that the whole analysis goes through when anisotropy (ρ)
and shear/extension (ε) are also taken into account. The crucial observation is that
in the more general case we still have

x∗2 = x∗5 = 0. (5.3)

Hence, although Ω will vary with ρ and ε we will still have a one-twist-per-wave
solution. Note that (5.3) means that along the rod there is no force or moment in
the direction d2; the helical rod is bent in the direction d1 of initial curvature, and
forces and moments are in the tangent plane to the imaginary cylinder on which
the helix winds. Indeed, it can be verified that the force, n, is directed along the
axis of the helix. The moment, m, however, is not. In experiments one is likely to
control the axial moment, Max := m · e3, rather than the total moment M . In the
Appendix, therefore, an analysis is given in terms of the axial moment. To first order
in κ0 (or u0) taking Max or M does not make any difference: (5.2) is also valid with
M replaced by Max.

If, in addition to initial curvature u0, we also take M to be small, but such that
κ0 = Au0/M remains small (for instance by taking u0 = O(ε), M = O(

√
ε), in
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terms of an arbitrary small parameter ε), then to a good approximation (5.2) can be
written as

radius =
Au0

T
, frequency =

M

C
, 1

2π − pitch angle =
AMu0

TC
, (5.4)

which is in agreement with the approximations (A 5) given in the Appendix.
We end by discussing some experiments serving to confirm the central result of this

paper. The one-twist-per-wave pre-buckling deformations observed experimentally
by Thompson & Champneys (1996) are shown in figure 12 for a circular rubber
rod. Moving down through the sequence of pictures, as the loading is increased,
we see a large-amplitude localized buckling mode with about three twists per wave
superimposed on top of this pre-buckling response. The significance of the three is
that it is approximately 2(1 + ν), as ν, Poisson’s ratio of rubber, is approximately
0.5. This rod certainly had an initial curvature in its unstressed state, and the work
of the present paper suggests very strongly indeed that this curvature was the cause
of the one-twist-per-wave behaviour.

This conclusion is reinforced by the more recent experiments illustrated in figure 13
for a rod of square cross-section. This highly perfect rod, with no measurable initial
curvature, was cast in silicone rubber. It was kindly supplied by C. R. Calladine of
the Cambridge Engineering Laboratory. It was tested under water, under conditions
of approximately neutral buoyancy. No pre-buckling deformation is observed, and
the localized buckling mode, with about three twists per wave, arises directly from
the trivial highly twisted straight configuration. Under the rigid loading of the test, a
dynamic jump at constant end-shortening and constant end-rotation carries the rod
from a buckled configuration (like that shown in the third picture) to self-contact
in the writhing configuration of the fourth picture. The bottom picture shows the
freely floating straight rod after the test. The high quality silicone rubber shows no
sign of having suffered any permanent deformation during the test.

Appendix A. Physical analysis of one-twist-per-wave equilibria

It is instructive to make a direct physical study of the possible one-twist-per-
wave equilibrium solutions of twisted rods. Consider a rod with principal bending
stiffnesses A and B, which may or may not be equal, and torsional stiffness C. Let
the rod have an initial curvature κ0, which may or may not be zero, in the principal
direction associated with A. We use as a measure of this curvature the applied
bending moment that would just straighten the rod, namely N = Aκ0.

Inducing only (additional) bending in the A direction, consider a helical deforma-
tion in which the rod is wrapped with one twist per helical wave around an imaginary
cylinder of radius r. Since there is no bending in the B direction, it follows that B
will not appear in our analysis: it may or may not be equal to A. The assumed helical
form is illustrated in figure 14 for a rod with a square cross-section. Here it should
be supposed that in its unloaded state the initial curvature was such that the rod
lay in a circle with the outer edge black.

Cutting the homogeneous helix at any point, the resultant moment vector, M ,
is the resultant of the bending moment A(κ − κ0) and the twisting moment Cτ , as
illustrated. The bending moment is at right angles to the rod, the twisting moment is
along the rod, and all three vectors lie in the tangent plane of the cylinder. Here, κ is
the curvature of the helical space curve, given by the standard formula κ = sin2 θ/r,
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Figure 12. A photographic sequence during the test of an initially curved rod of circular
cross-section. A one-twist-per-wave helical deformation is observed before the localized

buckling.

where 1
2π − θ is the pitch angle of the helix. With one twist per wave there is no

internal twist (τi = 0), so the twist, τ , is equal to the torsion of the helical space
curve, τ = τs = sin θ cos θ/r.

For a homogeneous solution, the resultant force at the cut must be parallel to
the axis, and we denote its magnitude by T . For the purpose of overall statics, we
can transfer the line of action of T to the central axis of the cylinder with the
introduction of the transfer moment of magnitude Tr lying in the tangent plane.
Now the constant support reactions supplied at the remote left-hand end of the helix
must be in balance with the above forces and moments at whatever phase, within a
wave, the helix is cut. This is only possible if the vector sum of M and the transfer
moment is parallel to the axis of the cylinder; notice that the vector of magnitude
Tr drawn in the figure is the reversed transfer moment.

Under these conditions the helix is held in equilibrium by a wrench (compare Love
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Figure 13. A photographic sequence during the under-water test of a silicone rubber rod of square
cross-section. The rod had no initial curvature, and only a straight trivial state is observed before
the localized buckling.

Figure 14. A helical equilibrium state with one twist per wave, showing the resultant forces
and moments at a cross-section of the rod. These are statically equivalent to a wrench (Max, T )
acting along the central chain-dotted axis.

1927, art. 270) comprising the axial tension, T , and the axial moment, Max. Notice
that Max is the axial component of the resultant moment M considered in the main
body of this paper.

Setting the axial and circumferential components of M equal to Max and Tr,
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respectively, we have

Max = Cτ cos θ + (A/r) sin3 θ −N sin θ,
Tr = Cτ sin θ − (A/r) sin2 θ cos θ +N cos θ.

(A 1)

Applying the one-twist-per-wave requirement, τ = τs = sin θ cos θ/r, gives

Max = (C/r) sin θ cos2 θ + (A/r) sin3 θ −N sin θ,
Tr = (C/r) sin2 θ cos θ − (A/r) sin2 θ cos θ +N cos θ.

(A 2)

Prescribing N , Max and T , these are two equations for the two helical variables θ
and r. A first-order solution valid for small θ is given by

Max/θ = C/r −N, (A 3)
Tr = (C −A)θ2/r +N. (A 4)

(a) Bending solution for the initially curved rod (N 6= 0)
Let us suppose that under a fixed T we gradually increase Max from zero. With

Max = 0 we have the trivial physical solution with θ = 0, Tr = N . This satisfies
(A 4), and leaves (A 3) indeterminate. A first-order solution close to this trivial state,
valid for small N , is given by

θ =
MaxN

CT
, r =

N

T
. (A 5)

So to first order, for fixed T and N , the radius r is a constant, while the angle θ
increases linearly with Max.

(b) Buckling solution for a perfect (N = 0) anisotropic rod
We next focus on the perfect (N = 0) rod with unequal principal bending stiff-

nesses. For such an anisotropic rod we would expect the one-twist-per-wave tape-like
behaviour to involve bending about the weak axis. So we are led to assume B > A.

For a perfect rod, with N = 0, equation (A 3) gives

θ

r
=
Max

C
, (A 6)

and substituting into (A 4) gives

M2
ax

T
=

C2

C −A. (A 7)

Now the perfect rod (with fixed T , say) has the trivial solution θ = r = 0, valid for all
Max(= M). We can therefore identify (A 6), (A 7) (valid as θ → 0) as an eigenvalue
problem with a non-trivial solution determined by the critical value of Max. Thus,
(A 7) gives the critical buckling condition.

We see that for a real buckling solution we need C greater than the relevant
bending stiffness (here, A). For a solid section, C is usually of the order of the
lesser bending stiffness. So this analysis shows that there will usually be no possible
equilibrium state for a tape-like rod standing, rather than lying, on the imaginary
cylinder, a result also reached in van der Heijden & Thompson (1997).

The dimensionless version of (A 7), using (2.11), reads

m2 =
1 + ρ

(1 + ν)(ρ− ν)
. (A 8)
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This is the equation for the curve mc3 in the ρ–m parameter planes in Champneys &
Thompson (1996) and van der Heijden et al. (1997). It is shown in van der Heijden
& Thompson (1997) that under some conditions this curve is part of the buckling
line, describing (lying) tape-like buckling.
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